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Abstract

Improved validation for models of complex systems has been a primary focus over 
the past year for the Resilience in Complex Systems Research Challenge. This 
document describes a set of research directions that are the result of distilling those 
ideas into three categories of research—epistemic uncertainty, strong tests, and value 
of information. The content of this document can be used to transmit valuable 
information to future research activities, update the Resilience in Complex Systems 
Research Challenge’s roadmap, inform the upcoming FY18 Laboratory Directed 
Research and Development (LDRD) call and research proposals, and facilitate 
collaborations between Sandia and external organizations. The recommended 
research directions can provide topics for collaborative research, development of 
proposals, workshops, and other opportunities.
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1. INTRODUCTION

Model1 development is a multistep process (Figure 1), and model validation is a key step in that 
process. Model validation addresses the question, “Is the model adequate to use for the intended 
application?” (Oberkampf and Roy 2010). Validation typically involves a quantitative 
comparison between experimental data and computational simulation results (Liu et al. 2011). 
Model validation activities provide model developers and users a better understanding of the 
model’s strengths, weaknesses, limitations, and appropriate uses. In short, model validation 
activities are critical for assessing, improving, and providing confidence in models. 

Figure 1. Model Development Process, adapted from Balci (1998).

Three sets of factors typically influence the design and execution of model validation activities:
1. The system being modeled: System attributes and characteristics affect model design and 

implementation decisions such as which system features to include, which numerical 
algorithms to select, and other fundamental modeling decisions. Additionally, the 
system itself affects validation considerations, such as 

o What data is available for testing?
o Are those data suitable for testing purposes and relevant to the conditions under 

which the proposed is intended to be used?
o Can one design and perform experiments to gather additional data? If so, how 

easily and quickly can we do so?
o What is the state of knowledge and uncertainty in model parameters and other 

model features?

1 For the purposes of this document, we restrict our discussion to computational models, i.e., models that are 
created to provide numerical quantities of interest and are implemented in some form of software. Hence, in this 
document, the term “model” is used to refer to computational implementations of physically descriptive 
mathematical models.  
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The system itself provides constraints that may limit the validation activities that can be 
rigorously performed.

2. Intended model uses: model validity is not considered in an absolute sense. Rather, it is 
considered in the context of the model’s intended use. As such, model validation 
activities are affected by the following:

o The questions and analyses that one is trying to address through model usage;
o The requirements that are defined for the model.
o The specific quantities of interest (QOIs) that the model is used to generate. 

Selection of the QOIs is an important step for not only giving the model users 
the information that they require, but the QOIs also guide which model variables 
will be used in model validation tests and acceptance criteria specification.

o Additional factors that may be specific to the intended use. For example, 
acceptance criteria in validation tests for models used to inform high-
consequence decisions may permit only small discrepancies between model 
outputs and experimental data. The need to complete model development and 
validation activities in a rapid time frame could be another consideration.

The intended model uses frequently establish the scope on what modeling activities are 
required. 

3. Feasibility constraints: time and resource constraints, information diagnostics limitations, 
personnel/skill limitations, etc. are all factors that can affect design and implementation 
of validation activities. Though these factors are not necessarily technical in nature, they 
can still have significant influence on validation activities.

Improving model validation continues to be an active area of research. The U.S. Department of 
Energy’s Advanced Simulation and Computing (ASC) program (e.g., Goodwin and Juzaitis 
2006; Diegert et al. 2007; Higdon et al. 2008), the American Society of Mechanical Engineers 
20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and Heat 
Transfer (ASME 2009), and the American Institute of Aeronautics and Astronautics’ Guide for 
the Verification and Validation of Computational Fluid Dynamics Simulations (G-077-1998e) 
(AIAA 1998), and Oberkampf and Roy (2010) are exemplary verification and validation 
expository efforts that have significantly advanced the state of the art for model validation. 
Nevertheless, model validation often still presents a challenge to model developers and users, 
and recent efforts at Sandia National Laboratories (Sandia) have focused on the additional 
challenges presented when attempting to validate models of complex systems.

Complex systems are emergent, multi-agent systems that operate without central control 
(Boccara 2004). The following are some of the fundamental attributes of complex systems 
present significant challenges when attempting to validate models of complex systems:

4. Observation of key system elements: Fundamental system structures of complex systems 
are frequently unknown or unobserved. In some cases, the mere act of measuring or 
observing the system will cause the system to fundamentally change (e.g., monitoring 
security measures may cause adversaries to change approaches). Validation activities 
not only require some level of observations but also rigorous characterization of those 
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observations (e.g., what do we really know about the observations and how do we 
regard them?).

5. Adaptive interactions: Individual system components may be observable, but the 
interaction mechanisms between the components may be unknown or unmeasurable. So 
validation activities that focus on individual components may not provide suitable 
information for validating system-level behaviors. 

6. Heterogeneity: Complex systems are often composed of so many different components 
that it can be difficult and time-consuming to gather necessary validation data on most, 
if not all, of the components. Decomposition of systems into meaningful, effective 
subsystems may be difficult and non-unique, presenting additional challenges to data 
collection.

The intended uses of complex systems models also provide validation challenges. For example, 
outcomes of interest may be qualitative; models are often built to investigate qualitative 
repercussions of system structure or assumptions rather than for predictive estimation. 
Additionally, in most instances, it is simply not possible to run a full-scale, controlled 
experiment for validation of a complex system application. Modeling the effects of a terrorism 
event on social networks is one such example.

Sandia has recognized that many of the national security challenges that the Labs address involve 
complex systems. Consequently, Sandia has initiated the Resilience in Complex Systems 
Research Challenge (RCS RC; Griffith and Kleban 2015). The goal of the RCS RC is to provide 
Sandia the capability needed to understand and control the resilience in complex systems 
important to Sandia’s national security missions. The RCS RC has recognized that validation of 
complex systems models remains a significant challenge to the complex systems community, 
and at the recommendation of the RCS RC’s external advisory board (Hubler et al. 2015), the 
RCS RC has prioritized improved validation of complex systems as a key research thrust. 
Towards this goal, Sandia hosted a workshop in Albuquerque, New Mexico June 22–24, 2016, 
bringing together researchers from the complex systems and validation communities. The 
purpose of the workshop was to discuss how to advance the state of knowledge and practice of 
validation for complex systems models. The workshop included two days of extensive 
presentations, brainstorming, breakout sessions, and discussions. By the end of the workshop, a 
large amount of ideas and research topics had been put forth and documented (Tsao et al. 2016).

This document describes a set of recommended research directions for validation of complex 
systems that emerged from the workshop. Following the workshop, a team of Sandians met to 
discuss and distill the information generated from the workshop into three sets of research 
directions. The following are the recommended research themes:

 Epistemic uncertainty: All modelers must determine how to handle potential uncertainties 
within their models. However, some challenges related to addressing epistemic 
uncertainties are either unique or more prevalent in models of complex systems.

 Strong Tests: Strong tests represent the ideal for validation testing. The development of 
guidelines for creating stronger validation tests of complex systems models could 
increase the rigor and formality with which validation activities are performed.

 Value of Information: Modelers of complex systems frequently seem to struggle with 
information challenges. They either do not have enough, have too much, or do not have 
the right kind of information. The ability to better understand the tradeoffs between 
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gathering additional information, the value of the information, and the cost and resources 
required to do so would help optimize resource use to for all model development stages, 
including validation.

The remainder of this document is structured as follows. The next section provides a brief 
literature review of complex systems model validation. The following three sections describe 
each of the individual research directions in greater detail, and the final section describes 
opportunities for how this document and the research thrusts can be used.



11

2. PREVIOUS WORK

Model validation is not a new idea for the complex systems community. Though models of 
complex systems can take on many forms, much of the validation-related work and discussions 
have focused on two modeling forms: system dynamics models and individual-based models 
(e.g., agent-based models). Because the two modeling approaches are rather different, the 
validation efforts have been unconnected. We describe them briefly below.

2.1. Validation and System Dynamics Models

The system dynamics community in general considers validation to be a process used to build 
confidence in a model (Forrester and Senge 1980). Since validation must be done in relation to 
the specific problem of interest, model, and audience, model validity is not an absolute concept. 
Instead, the system dynamics community frequently considers model validity to be a continuous 
spectrum in which a model is deemed more valid as more evidence is collected that instills 
greater confidence (Forrester and Senge 1980; Barlas and Carpenter 1990). This approach does 
not establish objective, formal validation tests of system dynamics models (Barlas 1996). 
Nevertheless, Sterman (1984) suggests that formal tests are necessary for instilling confidence, 
and that model validation can be used to provide confidence that the model has utility as a tool 
for its intended purpose (Forrester and Senge 1980). Though validation activities have been 
performed for system dynamics models, validation has admittedly not been a focus of the field, 
and system dynamics modeling projects often do not attempt validation at all (Barlas 1996; 
Qudrat-Ullah 2012). Most of the literature on validation in system dynamics was done early in 
the life of the field, and although much research on validation in system dynamics remains to be 
done, recent advances are lacking (Groesser 2012).  

System dynamics models are often used to identify a system structure that controls the dynamics 
of interest and not directly used for making predictive estimates about system outputs. Care 
needs to be taken to ensure how the identified system structures are used and whether that use is 
valid. This somewhat different use of models likely requires a different approach than validation 
of a black box model. Rigorous tests have not yet been developed that assess whether a model 
structure adequately matches the structure of the system it represents (Barlas 1996). Issues with 
autocorrelation and multicollinearity mean that common statistical tests often do not apply to 
validation of system dynamics models (Barlas 1996). Structural tests that have been used for 
system dynamics model validation include expert/literature/personal knowledge assessments, 
parameter verification, extreme condition tests, boundary adequacy tests (asking whether the 
model includes everything it should), and dimensional consistency tests (Forrester and Senge 
1980), formal reviews, and semantic analysis (Barlas 1996). Roy and Mohapatra (2003) suggest 
using structural equation modelling for validation of causal structures. Some recent efforts have 
been made to design data collection opportunities that allow for collecting both structural and 
behavioral data (Bier and Bernard 2014; Lakkaraju et al. 2014). Qudrat-Ullah (2005) suggests 
that structural validity should also be applied to individual-based models.

Behavioral validation is another important aspect of system dynamics model validation. 
Comparisons of model results to data are considered useful but inadequate validation in the 
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system dynamics field because they do not give insight into system structure or causal 
mechanisms (Barlas 1996). Behavior reproduction tests may look for symptom, frequency, or 
behavior characteristic generation, or may look to pattern or event prediction (Forrester and 
Senge 1980). Extreme policies and the sensitivity of modeled behaviors may also be tested 
(Forrester and Senge 1980). Turing tests have also been suggested for looking at behavior in a 
structure-oriented manner (Barlas 1996). System dynamics models are most commonly used for 
policy analysis. Validation options based on policies include tests of system improvement and 
sensitivity of the model to policies (Forrester and Senge 1980).

2.2 Validation and Individual-Based Models
Distributed, dynamic, individual-based models, such as network and agent-based models, are 
more commonly starting to be used as an alternative to single-facet, aggregate models. Both 
individual-based modeling approach and the systems represented in these models affects the 
manner in which these kinds of models can be validated (Ronald et al. 2010). Disaggregate, 
individual behaviors, and an evolving network of interactions between individuals and their 
environment underlie the mechanics of many models of complex systems. As models become 
more distributed and stochastic, individual-driven tools, such as agent-based models and 
networks, offer the possibility of modeling a wider class of phenomena than is possible with 
analytic tools alone.  (Crooks et al. 2008).

A few important issues can affect validation activities for individual-based models, including 
solutions by simulation, excessive detail, and unknown processes. Individual-based models are 
solved by simulations, and are meant to represent phenomena that generally lack an analytical 
solution (Windrum et al. 2007; Ormerod and Rosewell 2009). A simulation result is not 
necessarily meant to exactly match a specific set of data, which can make it difficult to 
demonstrate that the model is valid for an intended use. Additionally, as individual-based models 
move towards more detail, the validation challenges can increase (Gilbert 2004; Batty et al. 
2006, Crooks et al. 2008). Further, validation of these models may involve an assessment of the 
extent to which the model is a good representation of an (unknown) process that generates a set 
of observed data (Windrum et al. 2007).

Several proposed approaches exist to address the validation of individual-based models. Gilbert 
(2004) notes the importance of validating individual-based models at different levels—at the 
individual level, and at the aggregate level. However, performing the validation may be difficult 
due to lack of data that represents these abstract behavioral concepts and emerging aggregate 
patterns formed from individual behaviors. Windrum et al. (2007) and Ormerod and Rosewell 
(2009) suggest two approaches to deal with validation in agent based models. First, a clear 
definition of the question, or “what is being explained” and “what is not being explained”, needs 
to be specified. Secondly, model simplicity should be considered. Windrum et al. (2007) and 
Ormerod and Rosewell (2009) assert that a model with complicated agents requires additional 
justification for their validation, and should not be accepted until it is shown that a simpler model 
will not explain the phenomenon.

Developers of individual-based models have followed a diversity of approaches to conduct 
verification and validation of models, each of which deserves closer consideration. For example, 
two authors used replication and experimental techniques. Bert et al. (2014) used model 
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comparisons, and Sornette et al. (2007) used iterative trust building. These approaches have 
unresolved issues. Repeatability of validation experiments can be hampered by difficulties in 
controlling all variables, making it difficult to ensure comparability (Crooks et al. 2008). 
Similarly, docking (testing different models on a fixed dataset) may present difficulties as the 
models’ design and calibration includes idiosyncratic decisions made by the modelers, making 
comparisons impossible (Axtell et al. 1996; Crooks et al. 2008). It is worth mentioning that Bert 
et. al (2014) included a mixture of supporting techniques, such as empirical, component-based 
validation, and consultation with subject matter experts.

An application of a model can have a certain degree of validity, encapsulated in several measures 
of fit (Law and Kelton 1991). In this respect, authors have also sought to create metrics that 
better measure the difference of model output to the real world data it seeks to represent 
(e.g., information-theoretic metrics by Ronald et al. 2010). For complex systems models, these 
metrics may need to be different from traditional measures of goodness of fit to real-world data. 
Regardless of this effort, there is still debate on which best statistics to use for model calibration 
(Crooks et al. 2008).

The problems and issues facing validation of complex systems models provide many open 
questions and a large opportunity for future research. There is evidence that the field of 
individual-based modeling is thriving with powerful and productive methods that need to be 
formalized and validated. Windrum et al. (2007) and Ormerod and Rosewell (2009) pose the 
following questions for thought:

 Should empirical validation be the primary/unique basis for rejecting or accepting a 
model?

 How should one use available data?
 Which classes of empirical objects do we really want to replicate and test?

The relationship between calibration and validation in individual-based models needs to be 
further explored as well. Further directions may include methodological protocols for both the 
modeling, and the analysis of individual-based models (Windrum et al. 2007; Ormerod and 
Rosewell 2009). Further, a shift in expectations is likely needed both by end-users and modelers 
regarding validation (Ronald et al. 2010). This shift could include steering towards making 
models to help answer questions and to develop associated theory and techniques rather than 
making models meant to be a facsimile of the real world.
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3. EPISTEMIC UNCERTAINTY AND COMPLEX SYSTEMS MODELS

Every model developer must reconcile how to address sources of uncertainty within his/her 
model, but complex systems present some unique challenges for addressing those uncertainties. 
Uncertainties in computational simulation are often categorized into aleatory or epistemic 
uncertainty.  Aleatory uncertainty refers to inherent variable or randomness in a process which is 
irreducible, while epistemic uncertainty is lack of knowledge uncertainty due to incomplete 
information or incomplete knowledge (Oberkampf and Roy 2010, Helton 2009). In many 
situations epistemic uncertainty dominates, but it is often more difficult to characterize and 
parameterize than aleatory uncertainty. Characterizing and managing epistemic uncertainty 
appears to be a significant challenge when developing and using models of complex systems. 
Two sources of epistemic uncertainty stand out in particular—model form error and scaling 
uncertainty.

3.1 Model Form Error
Multiple factors can contribute to epistemic uncertainty, but model form error seems to be 
especially relevant for models of complex systems. Consider the example of creating a model to 
determine which military strategies are most effective for defeating terrorism networks such as 
Al Qaeda. Decades worth of data from military engagements with nation-states exists. If one was 
to model the conflict between the US military and Al Qaeda as a conflict between two nation-
states, the model would likely predict that the superior efficiency of the US military should result 
in a rapid defeat of the Al Qaeda network (McChrystal et al. 2015). This conclusion could be 
confirmed by historical data that indicates in most military conflicts, the more resource rich and 
efficient combatant prevails rapidly. However, the conflict between Al Qaeda and the U.S. 
military did not play out as expected, given the resource differentials. So what could cause such a 
significant discrepancy between the hypothetical model and the actual conflict?

Most model development efforts assume that the difference between simulation estimates and 
observational data is a random error quantity that is equal to the difference of the simulation 
error and the measurement error. This random error term is assumed to be Gaussian with mean 
equal to zero. The simulation error is often assumed to be comprised of errors in input 
parameters and numerical approximation schemes, and if these errors could be reduced 
completely to zero, the only difference between simulation estimates and observation data would 
be due to measurement error.

This assumption is frequently invalid when working with models of complex systems because 
the model itself can be a significant source of uncertainty. In the example above, the assumption 
that Al Qaeda would behave and act in the same manner as a nation-state is fundamentally 
incorrect (McChrystal et al. 2015). Relying on historical observations of military, nation-state 
conflicts is not suitable because Al Qaeda operated in a fundamentally different manner than had 
previously been observed. In this example, the model itself is a significant source of error and 
uncertainty. 

This uncertainty, termed model form error, often arises when working with models of complex 
systems. One approach to understanding if a significant model form error exists is to formulate a 
model discrepancy term. Instead of assuming that the difference between observational data and 
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simulation estimates is equal to an entirely random error term, model form prediction error or 
model discrepancy is defined to be the following:

Model Discrepancy = Observation – Simulation – random error

Model discrepancy is not assumed to be entirely random or represented with a Gaussian 
distribution; rather, it represents systematic errors that result from representing the system with a 
specific model formulation. Note that this formulation is only able to state something about the 
differences between the prediction of the model and the observations.  That is, the discrepancy or 
model form error is in “response” or prediction space.  The QoIs being compared are output 
responses, and the discrepancies quantified by validation are in these units, not in units of the 
internal structures, quantities, and parameters of the model. Once validation quantifies the 
direction and magnitude of QoI prediction errors, the project may turn to considering model-
form shortcomings and structural issues that could explain the errors, but this is a different 
activity than model validation.  That is, the estimation of a model discrepancy term does not say 
where or how the model form is incorrect, it only helps us understand that it is incorrect. We 
have written the discrepancy term very abstractly above, but it may be a function that is 
parameterized by various model parameters or model scenarios, which can help indicate where 
the model may be improved or re-considered in some situations.  

Model form error is not unique to models of complex systems, but it does seem to arise 
frequently when working with models of complex systems, and it may be more profound. For 
example, developers sometimes do not know the underlying phenomena that lead to behavior of 
the overall complex system. Developers may create a model or series of models attempting to 
determine these phenomena through simulation experimentation. However, the developers may 
not have a good understanding of which models are fundamentally more appropriate. This 
limited understanding frequently seen in models of complex systems contributes to model form 
error. 

Additionally, accurate estimation of model form error requires observational data. This may or 
may not exist. In the example above, Al Qaeda represented a fundamentally different network, 
and previous, historical observational data of nation-state conflicts is not valid. Similarly, when 
trying to model responses to potential policy options that have never previously been put forth, it 
is not clear whether historical data from implementation of previous, different policies are 
suitable for identifying model form errors. The challenge associated with gathering necessary 
observational data is a fundamental challenge for accurate estimation of model form error.

Estimation of model form error is a subject matter and statistical challenge, even for models of 
systems that are not considered to be complex.  Kennedy and O’Hagan (2001), Arendt et al. 
(2012), Brynjarsdóttir and OʼHagan (2014), and Wallen and Brake (2014) are examples of recent 
research efforts that are working to improve model form error estimation.

3.2 Scaling Error
Scaling error is another source of uncertainty that can affect models of complex systems. 
Complex systems often consist of large numbers of interacting subcomponents. Representing 
each individual element in a model may not be computationally tractable, so model developers 
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may actually simulate a smaller number of components in their models and then assume the 
results hold to scale for the actual system. For example, Chicago, Illinois, has a population of 
approximately three million people. If one tried to develop an agent-based model of disease 
spread in the population of Chicago, it is unlikely a model with only three agents (scaling factor 
of 1: 1,000,000) could provide reasonable estimates, and it may be computational intractable to 
have a model consisting of three million agents (scaling factor of 1:1). However, it is less clear 
what intermediate scaling factors between 1:1 and 1: 1,000,000 provide reasonable estimates 
while minimizing the computational burden. Further, since complex systems exhibit non-linear 
scaling of behavior from individual to ensemble, it is unknown whether the aggregate behavior 
of a few will be representative of the aggregate behavior of many. The way a particular system 
model result “scales” with size, or number of components will be highly dependent on the nature 
of the system, the modeling approach, and the intended use of the model, but, in general, formal 
guidance on how to choose such a scaling factor and how to calculate the resulting error that 
comes from choosing that factor does not exist.

3.3 Research Directions for Epistemic Uncertainty and Complex 
Systems Models
We propose the following research areas as opportunities for better characterizing uncertainty 
and errors in models of complex systems: 

 Model Form Error: 
o What does “model form error” really mean for complex systems model where 

theory and “ground truth” may be contingent?
o Recognizing that estimation of model discrepancy is not solely a statistical 

challenge, what advances can be made with respect to statistical elements, and 
how far can we rely on statistics to address this issue?

o When the required observational data is available, how can we leverage ongoing 
research into estimation of model discrepancy in hierarchical model validation to 
quantify model form error in models of complex systems?

o When the required observational data is not available, can we leverage surrogate 
data and models instead to estimate model discrepancy? And, can we adequately 
estimate the additional error introduced with the surrogates?

o When neither the required observational nor surrogate data are available, can we 
develop informative bounding estimates of model form error, based upon our 
knowledge of the other sources of error (e.g., measurement error, parameter error, 
numerical approximation error, etc.)?

 Scaling uncertainty: Can we develop formal guidance and methods for how to scale 
models of complex systems in a way that balances error reduction with computational 
efficiency? 

 Epistemic uncertainty in general:
o How can we better communicate with project sponsors about the various sources 

of epistemic uncertainty and the potential effects those sources may have on 
modeling results and intended uses of the model? How is risk associated with 
model form error best managed?
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o Can we characterize the uncertainty related to the outcome or consequence of a 
decision that model results support? Would doing so decrease consequence 
uncertainties and therefore decision-making uncertainties and enable better 
characterization of these uncertainties, relative to characterizing uncertainties in 
the phenomena prediction model itself and its results? Would doing so present a 
greater set of challenges, and what would those additional challenges be?

Making progress on these research directions would provide a number of benefits to the complex 
systems modeling community. First and foremost, progress would enable a better understanding 
of epistemic uncertainties inherent to models of complex systems. This understanding will help 
model developers and users better determine appropriate (and inappropriate) uses of the model, 
how to interpret simulation results, and identification of opportunities for improving the model 
and reducing uncertainties (when appropriate and if possible). More generally, progress will 
facilitate honest and clear communications about uncertainties in the model and how those 
uncertainties should be considered when making decisions informed by simulation results.  
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4. STRONG TESTS

4.1 Constructs Aiding Strong Test Development
Design and execution of validation tests is an important part of validation activities, and “strong 
tests” represent the ideal for validation tests. Strong tests have the following characteristics:

 The tests are explicitly defined. That is, the tests are written, precise, list the relevant 
input parameters and code settings, and list the relevant QOIs. The tests are written in 
sufficient enough detail to ensure reproducibility.

 The tests list explicit evaluation criteria that indicate how to compare QOIs with 
predicted results. The evaluation criteria can be specified either in terms of acceptance 
criteria (What result is required for the model to pass?) or failure criteria (What 
outcomes will result in a failure and, thus, indicate the model is not acceptable for the 
intended purpose?)

 The tests provide descriptions of the appropriateness of the test. These explanations 
would describe “Why the test is appropriate and provides useful information.”

Development of strong tests can be a challenge for model developers and users, so a number of 
constructs have been developed for modeling efforts related to high-consequence application 
areas. One such construct is validation test development guidelines for models supporting 
nuclear reactor safety, nuclear weapons testing, and other high consequence applications. For 
example, Trucano et al. (2002) describe “What is a validation test for the ASC program?”, and 
Oberkampf and Trucano (2008) provide guidelines for validation tests and benchmarks for these 
application areas. Oberkampf and Trucano (2008) provide six guidelines for validation test 
development. Among other relevant topics, these guidelines address who should be involved in 
the testing, identify which features of the system ought to be included in tests, suggest various 
testing measurements, and identify the types of error that the tests should be designed to estimate 
and analyze. Oberkampf and Trucano (2008) also provide recommendations for information that 
should be included in benchmark tests, including conceptual descriptions, mathematical 
descriptions, accuracy assessments, code comparison instructions, and other topics. Not 
surprisingly, these types of information are consistent with what is needed to develop a strong 
test.

A hierarchy of validation tests is another construct developed for models supporting high-
consequence applications. The base of the hierarchy, shown in Figure 2, consists of many 
“separate effects” tests that evaluate individual components of the models. The next higher level 
in the hierarchy includes integral effect tests that include multiple components and subsystems. 
As one proceeds up in the hierarchy, fewer integral effects tests are performed, but the tests are 
evaluating increasingly integrated components and subsystems. The peak of the hierarchy 
includes full system level tests that are intended to provide total system validation. 
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Figure 2. Validation Test Hierarchy (Wiler 2016).

The hierarchy concept can be helpful for thinking about test design, but it is also very useful for 
understanding the information that a specific test or category of tests would provide, if 
performed. The hierarchy can also help one understand what additional testing would be required 
as one attempts to move towards total system validation.

The constructs mentioned above have been developed primarily for physics-based models related 
to high-consequence applications. The development of comparable constructs specific to models 
of complex systems would lead to stronger validation tests of these models.

4.2 Research Directions for Strong Tests
We propose the following research areas as opportunities for better characterizing uncertainty 
and errors in models of complex systems: 

 Can we develop validation test and benchmark guidelines that are comparable to those of 
Oberkampf and Trucano (2008) but are specific for models of complex systems?

o Can we define what a validation experiment is for a model of complex systems 
and how that experiment would differ from validation experiments defined for the 
ASC program and other physics-based applications?

o If we could characterize the complexity of a system with a limited number of 
parameters, how might the validation experiments change as we “increase the 
complexity related parameters?”

o Oberkampf and Trucano’s (2008) guidelines are fairly general, but can we 
identify the implications of trying to apply them to models of complex systems?

o Can we develop rigorous validation tests that incorporate subject matter expert 
opinion, qualitative information, metadata, and other information that are not 
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commonly used in current validation tests but seem to be more easily acquired 
than field or experimental data for models of complex systems?

o If so, how do we develop suitable pass/fail criteria?
o Under what conditions is it possible to develop suitable benchmarks that will 

remain valid for a long time (10+ years)? This question seems particularly valid 
for models of complex systems in which the systems seem to change, adapt, and 
evolve at time scales much shorter than our knowledge of physical systems 
changes.

 Can we develop a validation test hierarchy that is specific to models of complex systems?
o Can we use the concept of a validation hierarchy that includes validation at a 

component and subsystem level to provide meaningful information? This is 
particularly at issue for complex systems that are considered to be irreducible, i.e., 
the behavior of the overall system cannot be accurately represented merely by 
replicating the behavior of individual components.

o If so, to what extent can we decompose the system into individual subsystems and 
components for testing and still get meaningful information? 

o What guidelines and recommendations can be developed to determine an 
appropriate level of decomposition?

Progress towards these research directions would provide several benefits to the complex 
systems community. The overall benefit would be better-designed validation tests and 
benchmarks. Guidance to test developers would enhance transparency and reproducibility of 
tests. Increased standardization of testing approaches would be another benefit. Additionally, 
modelers of complex systems would be able to better communicate with stakeholders about 
validation testing. The modelers would be able to show where a proposed testing regime would 
reside on the hierarchy and the benefits and limitations of the testing regime.
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5. VALUE OF INFORMATION

5.1 Information Acquisition and Usage for Model Development
Data and information are essential to all model development activities. Data and information are 
used to inform conceptual model formulation, parameter development and calibration, boundary 
conditions, and validation testing. Field data, experimental results, subject matter elicitations, 
surrogates, metadata, and qualitative information can all be useful at various stages in the model 
development process. However, not all types and sources of information are equally useful. Data 
quality can vary from one source to another, and it may be difficult to determine how to use or 
weight information that appears to conflict (or is inconsistent with) other sources of information. 
Some information sources may be easy to harvest but provide only limited benefit to the 
modeling effort. Others may provide significant benefits but require significant time, effort, and 
cost to acquire. Evaluating the costs and benefits of data and information acquisition is 
something that every model developer must go through.

Modelers of complex systems seem to face even greater challenges when searching for data and 
information:

 Complex systems can be composed of so many different components that it can be time- 
or cost-prohibitive to characterize every component. (e.g., see Gabert 2016).

 Conducting a controlled field experiment to collect data may not be possible (e.g., 
modeling human behaviors in response to a hurricane event).

 Measuring model components may be difficult, if not impossible (e.g., social and cultural 
attributes in the Dynamic Multi-Scale Assessment Tool for Integrated Cognitive-
behavioral Actions (DYMATICA) projects (Bernard et al. 2016)).

 Observation and interaction with the system may fundamentally change the system and 
its behaviors (e.g., cyber and physical security systems).

 Measurement of individual component features may be relatively easy but not 
representative of the overall system behavior (e.g., foraging by a single ant contrasted 
with aggregate foraging behavior of ant colonies).

 Stakeholders for models of complex systems may want model results within short periods 
of time (e.g., incident response (DHS 2016)).

 When systems are constantly changing, validity of data may have a short shelf-life (e.g., 
social networks in high schools).

Consequently, “We can’t get any data” is too often a common refrain for complex systems 
modelers. In some cases, this statement may be true, but more often, the correct statement is 
“Quality information collection is difficult, time-intensive, and expensive.” Given the many 
benefits that quality information can provide models, complex systems modelers could benefit 
from better understanding how to evaluate the tradeoffs between the effort required to gather 
additional information and the benefits the additional information would provide.

“Value of information” (VOI) is a related concept that has recently emerged in the medical 
literature and is being used with increasing frequency. The principal current research area for 
VOI is analysis of what medical research should be funded, focusing on what the additional 
anticipated information from a proposed study will provide in terms of measurable patient or 
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organizational outcome.2 VOI is becoming prevalent in the medical decision-making literature 
(e.g., see Strong et al. 2014; Jalal et al. 2015; ), but the underlying, classical operations 
formulations are less reported upon since available parameters from medical studies often do not 
align well with these formulations. Even though the VOI concept may not be fully developed, its 
further maturation, especially with regards to models of complex systems, would benefit 
validation activities. Efforts that could be built upon include Clemen and Winkler (1985), Brand 
and Small (1995), Nosy et al. (2011), Singh et al. (2008), Fischoff (2013), Lefgran (2014), 
Manski (2013), Barnes et al. (2016), Purcell and Roozbeh (2016), Pedrycz and Bargiela (2012), 
Heckerman et al. (1993), and Wang and Watada (2010). 

5.2 Research Directions for Value of Information
We propose a research direction that focuses on the research and development of formal methods 
for evaluating the value of information for models of complex systems. Formal VOI methods for 
models of complex systems would likely need to include the following:

 Categorization and identification of potential information sources
 Specification of activities required to acquire these information sources
 Methods and metrics for quantifying resources, costs and other “effort” factors related to 

performing these activities
 Specification and categorization of how the acquired information could be used in the 

model development process (e.g., calibration, boundary condition specification, 
validation testing, etc.)

 Methods and metrics for quantifying the benefits of using the additional information in 
the specified manner

 Methods for analyzing and optimizing the cost-benefit tradeoffs
 Applications and demonstrations of the proposed methods and metrics

Research activities should be focused on both the individual research items and overarching 
processes for integrating the individual pieces. Additionally, specific attention ought to be paid 
to the relative merits of proxy or “analogue” data. These data may be more easily available; 
however, determining the benefits that proxy data, relative to data for the specific phenomenon 
being modeled, needs to be rigorously evaluated.

Maturation and formalization of VOI concepts for models of complex systems would provide 
multiple benefits. This research would provide a better understanding of the tradeoffs between 
the costs and benefits of gathering additional information for model development activities. This 
work would also provide increased understanding of the limits and diminishing returns that 
would eventually come with information gathering activities. This understanding will help model 
developers and users understand “what is needed” and “what is good enough.”

Additionally, this research could help focus information-gathering activities. By understanding 
which information sources will provide the greatest return, modelers can scope their information-
gathering activities to be more efficient. Better information also ought to lead to better 
experimental design.

2 The April and July 2016 issues of the journal Medical Decision Making highlight current practices and applications 
of VOI in medical decision making. 



25

Ultimately, this research will help facilitate communication about models, information, and 
validation between model developers and users. Sponsors can more fully understand the cost of 
model development and validation, and all stakeholders can have more realistic expectations 
about model limitations and confidence in model results.
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6. CONCLUSIONS

Improved validation for models of complex systems has been a primary focus over the past year 
for the Resilience in Complex Systems Research Challenge. Sandia hosted a workshop focused 
on this topic in June 2016, and the workshop generated a plethora of research ideas and 
discussion. This document describes a set of research directions that are the result of distilling 
those ideas into three categories of research. The recommended research direction themes are 
epistemic uncertainty, strong tests, and value of information. 

The content of this document can be used to inform future research activities in a number of 
ways. First, the recommended research actions lend themselves to some potential actions that 
could be taken in the near term. These potential actions include the following:

 Draft a white paper that is a complex systems-specific version of the Oberkampf and 
Trucano (2008) paper. This paper could describe the implications of applying their 
validation test and benchmark guidelines for models of complex systems. Application of 
the guidelines to a specific model will provide insights in the context of a real, tangible 
example.

 For a selected project that is currently developing a model of a complex system, bring 
together the project team with staff from the Research Challenge to jointly develop and 
execute a set of validation tests using the above white paper.

 For a selected model of complex systems, map out how one would go about doing a VOI 
assessment for a set of validation tests. This activity could include identifying potential 
experiments and data sources, the resources needed to gather the related data, assessing 
the benefits of going through the process, and formulation for evaluating the tradeoffs 
between the options. 

These and many other potential actions could be performed.

Second, this document can be used to inform the Resilience in Complex Systems Research 
Challenge’s roadmap. The Research Challenge is in the process of updating its roadmap, and 
these research directions can be used to identify and prioritize specific research activities for 
advancing the research challenge. 

Third, these research directions can be used to inform the upcoming FY18 Laboratory Directed 
Research and Development (LDRD) call and research proposals. The LDRD program is Sandia's 
principal source of discretionary research and development funding, and it gives Sandia the 
flexibility to invest in long-term, high-risk, and potentially high-payoff R&D that builds and 
stretches the Labs’ science and technology capabilities. Successful research into better validation 
for models of complex systems would be a long-term, high-payoff result for Sandia. The 
Research Challenge leadership ought to engage with Sandia’s Program Management Unit (PMU) 
leads that are developing the LDRD in order to describe the benefits to the PMUs and to have 
elements of the recommended research directions incorporated into the LDRD call. Additionally, 
any Grand Challenge LDRD Proposals that the Research Challenge endorses should include 
elements of the recommended research directions.

Finally, the recommended research directions can be used to facilitate collaborations between 
Sandia and external organizations. The recommended research directions can provide topics for 
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collaborative research, development of proposals, workshops, and other opportunities. Potential 
collaborators could be modelers needing assistance with validation, validation experts seeking 
opportunities to apply new/experimental validation approaches to real models, staff from 
Sandia’s Academic Alliance partners and other universities, and other interested individuals.



29

7. REFERENCES

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations 
(G-077-1998e). AIAA Standards.   ISBN: 978-1-56347-354-8.

Arendt P. D. et al. 2012. Quantification of model uncertainty: Calibration, model discrepancy, 
and identifiability. Journal of Mechanical Design, 134(10), 100908.

ASME V&V 20-2009 Standard for Verification and Validation in Computational Fluid 
Dynamics and Heat Transfer:  https://www.asme.org/products/codes-standards/v-v-20-2009-
standard-verification-validation

Axtell R., et al. "Aligning simulation models: A case study and results." Computational & 
Mathematical Organization Theory 1, no. 2 (1996): 123-141.

Balci O. 1998. “Chapter 10: Verification, Validation, and Testing,” in Handbook of Simulation: 
Advances, Applications, and Practice, J. Banks (Ed.), John Wiley and Sons, Inc. Hoboken, NJ.

Barlas Y. S. Carpenter. 1990. “Philosophical roots of model validation:  Two paradigms.” System 
Dynamics Review.  6 (2):  148-166.

Barlas Y. 1996. “Formal aspects of model validity and validation in system dynamics.” System 
Dynamics Review. 12 (3): 183-210.

Barnes M. et al. 2016, “Social Networks and Environmental Outcomes,” PNAS, V. 113, N. 23, 
6466-6471.

Batty M. et al. "Visualization in spatial modeling." Complex artificial environments. Springer 
Berlin Heidelberg, 2006. 49-70.

Bernard M. et al. 2016. “Anticipating The Potential Range of Behaviors for Individuals 
Interacting Within Societies.” In Modeling Sociocultural Influences on Decision Making: 
Understanding Conflict, Enabling Stability. Taylor & Francis.

Bert F. et al. “Lessons from a comprehensive validation of an agent based-model: The 
experience of the Pampas Model of Argentinean agricultural systems.” Ecological Modelling, 
273 (2014): 284-298.

Bier A. and M. Bernard. “Validating a hybrid cognitive-system dynamics model of team 
interaction.” 5th International Conference on Applied Human Factors and Ergonomics, 
July 19--23, 2014.

Brand K. and M. Small 1995, “Updating Uncertainty in an Integrated Risk Assessment: 
Conceptual Framework and Methods,” Risk Analysis, Volume 15, Number 6, 719-731.

https://www.asme.org/products/codes-standards/v-v-20-2009-standard-verification-validation
https://www.asme.org/products/codes-standards/v-v-20-2009-standard-verification-validation


30

Brynjarsdóttir J. and A. OʼHagan. 2014. “Learning about physical parameters: The importance of 
model discrepancy.” Inverse Problems, 30(11), pp. 2–22.

Clemen R. and R. Winkler 1985, “Limits in the Precision and Value of Information from 
Dependent Sources,” Operations Research, Volume 33, 427-442.

Crooks et al. "Key challenges in agent-based modelling for geo-spatial simulation." Computers, 
Environment and Urban Systems 32.6 (2008): 417-430.

DHS. 2016. “About the National Infrastructure Simulation and Analysis Center: Incident 
Response Fast Analysis & Simulation Team,” accessed on September 19, 2016 at 
https://www.dhs.gov/about-national-infrastructure-simulation-and-analysis-center .

Diegert K. et al. 2007, “Toward a More Rigorous Application of Margins and Uncertainties 
within the Nuclear Weapons Life Cycle – A Sandia Perspective,” Sandia National Laboratories, 
SAND2007-6219.

Fischoff B. 2013, “The Science of Science Communication,” PNAS, V. 110, Suppl 3, 14033-
14039.

Forrester J. and P. Senge. 1980. “Tests for building confidence in system dynamics models.” 
TIMS Studies in Management Sciences.  14 (1980):  209-228.

Griffith R, Kleban S. 2015. Resiliency in Complex Systems (RCS) Research Challenge Roadmap 
2016, accessed at https://cto.sandia.gov/ResearchChallenges/ComplexSystems.shtml. 

Gabert K. 2016. “Cybersecurity Models,” presentation at Complex Systems Models and Their 
Applications: Towards a New Science of Verification, Validation & Uncertainty Quantification, 
Albuquerque, NM, June 22-23, 2016.

Gilbert N. "Open problems in using agent-based models in industrial and labor dynamics." 
Advances in complex systems 7.02 (2004): 285-288.

Goodwin B. T. and R. J. Juzaitis, 2006, “National Certification Methodology for the Nuclear 
Weapon Stockpile,” Lawrence Livermore National Laboratory, UCRL-TR-223486.

Grösser, S. "What Is a Validation Methodology? Analyzing and Synthesizing Two Meanings." 
In Systemic Management for Intelligent Organizations, pp. 47-60. Springer Berlin Heidelberg, 
2012.

Heckerman D. et al. 1993, “An Approximate Nonmyopic computation for value of information,” 
IEEE Trans Pattern Analysis Machine Intel. V. 15, N. 3, 292-298.

Helton, J.C. 2009, “Conceptual and Computational Basis for the Quantification of Margins and 
Uncertainty,” Sandia National Laboratories, SAND2009-3055.

https://www.dhs.gov/about-national-infrastructure-simulation-and-analysis-center
https://cto.sandia.gov/ResearchChallenges/ComplexSystems.shtml


31

Higdon D. et al. 2008, “QMU for Advanced Certification: Identifying Existing Limitations with 
Discussion of Solution Strategies,” Los Alamos National Laboratory, LA-UR-08-06887.

Hubler A. et al. 2015. Complex Systems Task Force External Advisory Panel, prepared for 
Sandia National Laboratories. 

Jalal H. et al. "Computing expected value of partial sample information from probabilistic 
sensitivity analysis using linear regression metamodeling." Medical Decision Making 35.5 
(2015): 584-595.

Kennedy M. and A. O’Hagan. “Bayesian Calibration of Computer Models”, Journal of the Royal 
Statistical Society Series B, 2001.  63, pp. 425-464.

Lakkaraju K. et al. Validating agent models through virtual worlds. Sandia Technical Report. 
SAND-2014-0451.

Law A. and W. Kelton. Simulation modeling and analysis. Vol. 2. New York: McGraw-Hill, 
1991.

Liu, Y., W. Chen, P. Arendt, and H. Huang. (2011) “Toward a better understanding of model 
validation metrics.”  Journal of Mechanical Design, July 2011, Vol. 133.  DOI: 
10.1115/1.4004223.

Lefgran E. 2014, “Opinion: Mathematical Models: A Key Tool for Outbreak Response,” PNAS, 
V. 111, N. 51, 18095-18096.

Liu Y. et al. “Toward a better understanding of model validation metrics,” Journal of 
Mechanical Design, July 2011, Vol. 133. DOI: 10.1115/1.4004223

McChrystal S. et al. 2015. Team of Teams: New Rules of Engagement for a Complex World. 
Portfolio. 

Maheswaran H. and P. Barton 2012, “Intensive Case Finding and isoniazid preventative therapy 
in HIV infected individuals in Africa: economic model and value of information analysis,” PLoS 
One, V. 7, N. 1, e30457.

Manski C. 2013, “Diagnostic testing and Treatment Under Ambiguity: Using Decision Analysis 
to Inform Clinical Practice,” PNAS, V.110, N.6, 2064-2069.

Nosy B. et al. 2011, “The cost-effectiveness and value of information of three influenza 
vaccination dosing strategies for individuals with human immunodeficiency virus,” PLoS One, 
V. 6, N. 12, e27059.

Oberkampf W. and C. Roy.  Verification and Validation in Scientific Computing.  Cambridge 
University Press; 1st ed., 2010.



32

Oberkampf W. and T. Trucano. 2008. “Verification and Validation Benchmarks,” Nuclear 
Engineering and Design, 238: 716-743.

Ormerod P. and B. Rosewell. "Validation and verification of agent-based models in the social 
sciences." Epistemological aspects of computer simulation in the social sciences. Springer Berlin 
Heidelberg, 2009. 130-140.

Pedrycz W. and A. Bargiela 2012, “An Optimization of Allocation of Information Granularity in 
the interpretation of data structures: toward granular fuzzy clustering,” IEEE Trans Systems Man 
Cybernetics, Pt B, V. 42, N. 3, 582-590.

Purcell B. and K. Roozbeh 2016, “Hierarchical decision processes that operate over distinct time 
scales underlie choice and changes in strategy,” PNAS, V. 113, N. 31, E4531-E4540.

Qudrat-Ullah, H. "Structural validation of system dynamics and agent-based simulation models." 
In 19th European Conference on Modelling and Simulation, Riga, Latvia, vol. 94. 2005.

Qudrat-Ullah, H. "On the validation of system dynamics type simulation models." 
Telecommunication Systems 51, no. 2-3 (2012): 159-166.

Ronald N. et al. "Validation of complex agent-based models of social activities and travel 
behaviour." Proceedings of the 12th World Conference on Transport Research. 2010.

Roy S. and P. Mohapatra 2003, “Methodological Problems in the Formulation and Validation of 
System Dynamics Models Incorporating Soft Variables,” Proceedings of the 21st International 
Conference of the System Dynamics Society, 20–24 July 2003, New York, NY.

Singh S. et al. 2008, “Value of information of a clinical prediction rule: Informing the efficient 
use of healthcare and health research resources,” Int J Tech Assess. Health Care, V. 24, N. 1, 
112-119.

Sornette D. et al. "Algorithm for model validation: Theory and applications." Proceedings of the 
National Academy of Sciences 104, no. 16 (2007): 6562-6567.
Sterman, J. D. 1984. Appropriate summary statistics for evaluating the historical fit of system 
dynamics models. Dynamica 10 (2): 51-66.

Strong M. et al. "Estimating multiparameter partial expected value of perfect information from a 
probabilistic sensitivity analysis sample a nonparametric regression approach." Medical Decision 
Making 34.3 (2014): 311-326.

Swiler L. 2016. “VVUQ Best Practices in Computational Science/Engineering Problems with 
Some Thoughts about Extensions/Limits to Complex Systems Models,” presentation at Complex 
Systems Models and Their Applications: Towards a New Science of Verification, Validation & 
Uncertainty Quantification, Albuquerque, NM, June 22-23, 2016.



33

T. G. Trucano, M. Pilch and W. L. Oberkampf 2002, “General Concepts for Experimental 
Validation of ASCI Code Applications,” SAND2002-0341.

Tsao J, et al. 2016. Complex Systems Models and Their Applications: Towards a New Science of 
Verification, Validation & Uncertainty Quantification: Workshop Footprint Document, technical 
report SAND2016-8409, Sandia National Laboratories, Albuquerque, New Mexico.  

Wallen S. and M. Brake. 2014. “A method for the quantification of model form error associated 
with physical systems.” SAND2014-2373.

S. Wang and J. Watada 2010, “Value of information and solution under VaR Criterion for fuzzy 
random optimization problems,” Fuzzy Systems.

Windrum P. et al. 2007. “Empirical Validation of Agent-Based Models: Alternatives and 
Prospects”. Journal of Artificial Societies and Social Simulation 10(2)8 
http://jasss.soc.surrey.ac.uk/10/2/8.html.



34

DISTRIBUTION

4 Lawrence Livermore National Laboratory 
Attn: N. Dunipace (1)
P.O. Box 808, MS L-795, Livermore, CA 94551-0808

1 David Alderson NPS 
1 Daniel Appelo UNM 
1 George Barr Consultant 
1 Wei Chen Northwestern 
1 Daniel Delaurentis Purdue 
1 Dennis Engi Consultant 
1 Alfred Hubler UIUC 
1 Linas Mockus Purdue 
1 Roshanak Nateghi Purdue 
1 Bill Oberkampf WLO Consulting 
1 Norman Packard Protolife, Inc.
1 Shreyas Sundaram Purdue 
1 Jessica Glicken Turnley Galisteo Consulting

1 MS0110 David Womble 1220
1 MS0152 Susan Stevens-Adams 0431
1 MS0159 Elizabeth Keller 0159
1 MS0351 Andy McIlroy 1900
1 MS0351 Benjamin Cook 1910
1 MS0351 Robert Leland 1000
1 MS0351 William Hart 1913
1 MS0359 Karla Weaver 1900
1 MS0386 Christopher Frazer 10242
1 MS0438 Justine Johannes 2800 
1 MS0440 Scott Holswade 2200
1 MS0519 Laura McNamara 5346
1 MS0620 Kasimir Gabert 5638
1 MS0621 Todd Jones 5638
1 MS0724 James Chavez 6000 
1 MS0736 Richard Griffith 6230 
1 MS0750 Lori Parrott 6913 
1 MS0789 Sondra Spence 1931
1 MS0793 John Cox 4122
1 MS0801 David White 9300 
1 MS0828 Vicente Romero 1544 
1 MS0828 Walt Witkowski 1544 
1 MS0831 John Zepper 5500 
1 MS0836 Dean Dobranich 1514 



35

1 MS0933 Chris Lamb 9526 
1 MS0980 Amy Shrouf 5554 
1 MS0980 Steven Gianoulakis 5550 
1 MS1002 Philip Heermann 6530
1 MS1027 Christina Ting 5652 
1 MS1027 Curtis Johnson 5652
1 MS1104 Carol Adkins 6100 
1 MS1104 Charlie Hanley 6110 
1 MS1137 Kevin Stamber 6132 
1 MS1137 Alexander Outkin 6921
1 MS1137 Tatiana Flanagan 6921
1 MS1138 Dan Pless 6132 
1 MS1138 Eric Vugrin 6921
1 MS1138 Steve Kleban 6132 
1 MS1138 Steve Verzi 6132 
1 MS1138 Theresa Brown 6924 
1 MS1138 Thomas Corbet 6924 
1 MS1138 Walt Beyeler 6924 
1 MS1139 Nancy Brodsky 6921
1 MS1169 Charles Barbour 1300 
1 MS1173 Alex Roesler 5440
1 MS1188 Ace Sorensen 6131 
1 MS1188 Bruce Thompson 6133 
1 MS1188 Craig Lawton 6135 
1 MS1188 Dean Jones 6131
1 MS1188 Jared Gearhart 6131
1 MS1188 Kat Jones 6131
1 MS1188 Marcy Hoover 6130 
1 MS1188 Mark Smith 6133 
1 MS1188 Nadine Miner 6114 
1 MS1188 Nat Brown 6131
1 MS1188 Pat Finley 6131
1 MS1188 Tammy Brown 6135 
1 MS1243 John Vonderheide 5520 
1 MS1244 Stephen Lott 5530 
1 MS1315 Bill Seng 1132
1 MS1318 Brian Adams 1441
1 MS1318 James Stewart 1441
1 MS1318 Laura Swiler 1441
1 MS1318 Tim Trucano 1400 
1 MS1318 Tim Wildey 1441
1 MS1323 Bill Rider 1446 
1 MS1324 Bruce Hendrickson 1400 
1 MS1324 John Feddema 1460 
1 MS1326 John Siirola 1464 
1 MS1327 Asmeret Naugle 1463 



36

1 MS1327 Christy Warrender 1462 
1 MS1327 Craig Vineyard 1462 
1 MS1327 David Stracuzzi 1462 
1 MS1327 Jennifer Troup 1464 
1 MS1327 John Wagner 1462 
1 MS1327 Mike Bernard 1463 
1 MS1327 Phil Bennett 1463 
1 MS1348 John Larson 4200 
1 MS1371 Dianna Blair 6830
1 MS1421 Jeff Tsao 1120 
1 MS1427 Grant Heffelfinger 1100 
1 MS1491 Paul Yourick 0710
1 MS9001 Marianne Walck 8000 
1 MS9004 Duane Lindner 8100
1 MS9052 Matt Lave 6112 
1 MS9151 Heidi Ammerlahn 8900 
1 MS9151 Jim Costa 8950 
1 MS9151 Susanna Gordon 8960 
1 MS9152 Robert Clay 8953 
1 MS9158 Jackson Mayo 8953 
1 MS9158 Robert Armstrong 8956 
1 MS9159 Cosmin Safta 8954 
1 MS9159 JD Doak 5652
1 MS9159 Jerry McNeish 8954 
1 MS9159 Karim Mahrous 8970
1 MS9159 Phil Kegelmeyer 8900 
1 MS9957 Amanda Dodd 1914 

1 MS0899 Technical Library 9536 (electronic copy)



37


